Electron Paramagnetic Resonance Study of Cu^{2+} in CdCa (CH_3COO)₄ · $6H_2O$ Single Crystal

Hüseyin Kalkan and Ismet Senel^a

Department of Electrical and Electronics Engineering, Faculty of Engineering, Ondokuz Mayis University 55139, Samsun, Turkey

^a Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayis University 55139, Samsun, Turkey

Reprint requests to Dr. H. K.; Fax: +90-362-4576091; E-mail: kalkanh@omu.edu.tr

Z. Naturforsch. **55a**, 729–732 (2000); received April 4, 2000

The Electron Paramagnetic Resonance spectra of Cu^{2+} in CdCa ($CH_3COO)_4 \cdot 6H_2O$ (cadmium calcium tetraacetate hexahydrate) powder and single crystal have been recorded at 300 and 133 K. The angular variation of the spectra indicated the substitution of the host Cd^{2+} with Cu^{2+} . The observed values of the **g** and **A** hyperfine tensors were found to be temperature dependent, and this dependence is discussed and explained on the basis of dynamic Jahn-Teller effects. The spin-Hamiltonian parameters were found to be axial symmetric at room temperature, whereas they showed deviations from axial symmetry at low temperature. The **g** and **A** tensors where found to be coaxial within the limits of experimental errors, and the ground state wave functions of the complex at 300 and 133 K have been constructed.

Key words: EPR; Crystal and Ligand Field; Jahn-Teller Effects.